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Given Banach spaces X, a subspace Y, and a finite set % of bounded linear func-
tionals on 7V, let Y, denote all elements of Y which are anihilated by the functionals
in 4. We investigate the relation between the real interpolation spaces (X, Y), , and
(X. Y4)g,. Applications are given to Sobolev spaces, best approximation with
constraints, and weighted Lebesgue spaces.  © 1995 Academic Press, Inc.

1. INTRODUCTION

This paper deals with the so called real interpolation method. We use
[1] as a general reference to interpolation theory.

Thus let X and Y be two Banach spaces. Assuming that Y is con-
tinuously embedded in X, we consider the interpolation space (X, Y), ,. If
9 ={TI,,.., Iy} is a given set of bounded linear functionals on Y, we let
Y, denote the subspace of Y of all elements u satisfying the constraints
Iw)=0, .., I'y(u)=0. In other words

Yo= Ym( ﬁ ker(Fj)>.

j=1

We shall investigate the relation between the two interpolation spaces
(X, Y)p, and (X, Y,),,. The later space is what we call an interpola-
tion space with constraints. The relationship between the two spaces is
described in an explicit form, which can be useful in several applications.
Let us mention boundary value problems for partial differential equations,
whereby the boundary operators are incorporated into the norm of the
interpolation spaces. (See Lofstrom [4] and [5]. Cf Grisvard [2], [3],
Zolesio [8]). Another application is best approximation with constraints.
(See Lofstrom [6]).
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REAL INTERPOLATION WITH CONSTRAINTS 31

In section 2 we give a general theorem on the extension of linear func-
tionals which is necesary for the sequal. In section 3 we present a general
theory giving the relation between the two interpolation spaces. Clearly
some conditions on the functionals are needed. These conditions can be
considered as a kind of independence, which we call strong independence.
In section 4 we give sufficient conditions for strong independence. In the
remaining two sections we discuss some general applications. In section 5
we consider interpolation of Sobolev spaces with applications to best
approximation with constraints. In the last section we consider weighted
Lebesque spaces.

The paper is an attempt to build a general theory which is able to cover
various special cases considered in earlier papers. Here let us mention
Lofstrom [4], [6]. Similar situations was considered by Grisvard [2],
[3], Lofstrom [S], Thomee [7], Zolesio [8].

2. EXTENSION OF LINEAR FUNCTIONALS

Let X and Y be two Banach spaces and assume that Y is continuously
embedded in X. If I is a bounded linear functional on Y we introduce the
functional

N(t, Ny =sup{|T(u)|: ue Y, J(t,u) < 1},

where 0 <1< o and

J(2, u) =max(flul x, ¢ [[ul y)-

Since I is assumed to be bounded on Y we have N(t, < C/t, for t 2 1.
Note also that if I"# 0 then

N, D' =inf{J(, w):we Y, [(w)=1}. (1)

To see this we first note that |I'(w)| < N(z, I') J(t, w) which gives half of
(1). For the other half we put w=u/I(u) if I'u)#0. Then I'(w)=1 and
J(t, w)=J(t, u)/|I'(u)|, which gives the remaining half.

THEOREM 1. Let I' be a bounded linear functional on Y. Then I' can be

extended to a bounded linear functional on the real interpolation space
(X, Yo, if and only if

e

1/p'
Ng‘p(r)=< Y (2RNQ2 K, r))ﬂ’> <. (2)

k=0

640°82 1-3
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Here l/p'=1—1/pand 0<O0<1, 1<p<oc or 00K, p=o0. The norm
of the extended functional is equivalent to N, (I').

Remark. 1f Y is dense in X then N(1/t, I') is equal to the K-functional
for the duals of X" and Y’ of X and Y. If in addition p < o« the theorem
1s equivalent to the so called duality theorem of interpolation theory. (See
[ 1], section 3.7). In this case condition (2) means that I'e (X", Y'), .

Proof. Take xe(X, Y), ,. Then we can write x =37 ,u, where u,eY
and

. 1/p
<Z (2502 7%, uﬁ)") <Clxly,-

k=0
If p < oc we have that

7

e & uk’;

k=0

1/p
<C< Y, (2Kg2F, uﬂ)”) -0, (3)
0.p

k>n

as n — «. Moreover

o

Y Tl < Y N2 5 TV 1) < NG (D) 1xll,.
k=0

k=0

We now define 7(x) by the formula [(x)=3 7 I'(#,). Then I' is unam-
bigously defined on (X, Y), ,. In fact, if x =35 w, is another representa-
tion of x we use (3) and the estimate above to deduce that

oon

Z (. — W)

k=0

— 0.

tp

Y Nug)— Y Iw,)

k=0 A=0

< CN().;)( r)

Clearly I" is now extended to a bounded linear functional on (X, Y), , with
norm bounded by a constant times N, ,(I').

In the case p = o0, we can extend I” to the closure of Y in the space
(X, Y), . using the same construction as above. Then we can use the
Hahn-Banach theorem to extend I to the full interpolation space.

To prove the converse implication, assume that /" can be extended to
(X, Y), , with norm M. For given positive numbers a, we can choose u, € Y
so that J(27% u,)=a, and N(27% I)a, <2I(u,). Since x,=31_, u
belongs to (X, Y), , we have

n 1/p
r(xn) < M ”xn “9./1 < CM( Z (2k0ak)‘)> .
k=0
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We conclude that

”

n lip
Y N2k r)aksc*M( y (2"”ak)”> ,
k=0

k=0

and hence N, ('} < CM. This completes the proof.

COROLLARY 1. Suppose that N(t, ') =0(t=™) as t = 0. Then I can he
extended to a bounded linear functional on (X, Y), , for all 6> 0,.

The proof is immediate.

3. INTERPOLATION WITH CONSTRAINTS

Assume that Y is continuously embedded in X and let % be a finite set
of bounded linear functionals on Y. Then we let Y, be the subspace of Y
consisting of all we Y satisfying the constraints I'(u) =0, for all I'e¥.
We shall now investigate the relation between the interpolation spaces
(X, Yy)p, and (X, Y), ,. Since Y, is a subspace of ¥ we have (X, Y,), , <
{X, Y), ,. Thus the converse inclusion is at focus in the sequel.

We shall define a strongly independent basis for the set 4. If .# is any
subset of 4 we put

N, Iy=sup{|INu)|: J(t,u)< 1 and A(u)=0o0fall de #'}.
Obviously we have that

N (LT)=2N () if #cx. (1)

DeriNttioN 1. If {I'), .., T} is a given set of functionals we put
N, =N, where %, ={I',.,I,} and m=1,.., M. We also write Ny = N.
The functionals I'y, ..., I"y, are called strongly independent if for all m we
have that N(t, I',)=O(N,,_,(t, I,)) as t - 0. We then say that I, has
order 0, if N(¢, I',,) ~ t "% ie. if there are positive constants ¢, and ¢, such
that
et KN, Ty eyt

for all sufficiently small values of r.

We say that I'y, .., I'y, is a strongly independent basis for the set 4 if
Iy, ., I, are strongly independent and form a linear basis for the space
spanned by the functionals in %.

There i1s a technically useful equivalent formulation of the definition of
strong independence which we give in our next definition,
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DerintTioN 2. The elements wy, ..., w,,e Y (depending on ¢) form a
supporting sequence for the functionals Iy, ..., I'y,, if there exist numbers
A >0 and t,> 0 such that

rr‘(‘vk) =6r,ks J(” uyk) </4/1\](13 rk)ﬂ (2)

forO<t<ty,and for r,k=1, ., M.
LeMMA 1. The functionals Ty, .., Iy, are strongly independent if and
only if there exist a supporting sequence w, .., w, €Y.

Proof. Using the definition of N, (t,I;) we see that for all
k=1, .., M there exists v, € Y such that

I'iv)=96,, forall r<k (3)
J,0,) S Ay [N (8, Ty) (4)

Now we define w,, recursively by means of the formulas

M
Was = Uy, W, =U,,— Z Fk(vm)“yk'
k=m+1

Then it is clear from (3) that I",(w,) =4, , for all r and k. Moreover, using
the definition of N,,_, and (4), we get

M
Ji,w,) It v,)+ Y | Ddu,) (e, wy)

k=m+1

M
g"(t’ Un,)‘<l+ Z Nmfl(ta rk)J(t7 w’k))‘

k=m+1

Assuming that we have already proved that J(r,w,) is bounded by a
constant divided by N, _(t, I'}) for k=m+1, .., M, we now get

M
J(t, w,) < CJ(t,v,) (1 + Y

k=m+1

Npw (8, Fk)>
Nkfl(ls Fl\)

Using the assumption we have that N, _ (¢, I'y) = CN(¢t, I,). In view of (1)
we have N,,_, < N. Therefore we can conclude that

N1t 1)
Ny (1, 1)
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is bounded for all small values of . From the assumption on v, therefore
we get that

Jt, w,) < CJit,v,) <C/N(1, T,).

This implies the first part of the lemma.
To prove the second part we have only to observe that

N, (s, [,)<J(t,w,)<C/N(L, T,).

Thus N,,_(t, I',) ~ N(¢, I',)). This completes the proof of the lemma.

We now give our first result on interpolation with constraints.

THEOREM 2.  Suppose that I, ..., I'y, is a strongly independent basis for
the set 4 and that I',, has order 0,,,, (im=1, .., M). Then I',,, can be extended
to (X, Y),, if 0,,<0. Moreover let 6 be a given number such that 0 <6< 1
and 0¢{0,, ..., 0}. Then we have the following conclusions:

If 0<0,, for all m then (X, Y4)p,=(X, Y)s,,.
Otherwise, (X, Y,), , consists of all xe(X,Y),, such that
L,(x)y=0 for every m with 6,, <8.

Proof. Using Corollary 1 we see that we can extend I, to (X, Y), , if
6, <0 Writing Y, =Y, and Y,=7Y, we shall use induction over m to
show that

0<0,= (X, Y)e,=(X, Yo )s, (5)
0>0,,= (X, Y,)o,={xe(X, Y, _)g,: [m(x)=0}. (6)

Here m=1,.., M. This will clearly give the theorem. First note that
(X, Y,)o,<(X, Y, )g, Inthecase § <8, itis therefore enough to show
the converse inclusion. Thus assume that xe(X, Y, ,),,. Then we can
find y,e Y such that I',(y,)=0 for j=1,..,m—1 and

Ix—yllx+2lydly<2K(t, x; X, Y,,_,), 0<t<oo.

We choose we Y so that I'yw)=0 for j=1,..,m—1, I (w)=1 and
J(1, w)y < A/N(t, I,,). This is possible according to Lemma 2 provided that
now 0 <t<1,. Next we put z=y,— I, (y,)w. Then it is clear that e ¥,,.
Therefore

K(it, x; X, Y,

m

V< x—zlx+elizlly S2K(L x5 X, Y, )+ T,(0)] S, w))
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In order to estimate I”,(y,) we put v, = ¥,on1 — ¥,5n. Since v,5»—0in Y
{(n— o), we have that
L

lrm(,vr)l < Z |rm(vn)| < Z N(tzll’ Fm)‘](tzn’ Un)'
n=0

n=0Q

Now we observe that
J(2" v,y <2K(12", x; X, Y, 1)
N(2" I, Y<CN(t, T,)2 "

Therefore we get the estimate

Kit,x; X, Y,)<C Y 27"™K(12" x; X, Y,,_\),

n=0

which implies that xe (X, Y,), , if 6 <0,,. This proves (5). Next consider
the case 0 > ),,. Assume that xe(X, Y,, ,),, and that I',(x)=0. Then we
choose y, as above but this time we consider v_,. Since y,,-»— x in X we
now get

o

|I—'m(yl)] = |rrv1(x_yl)l < Z ]rm(v »n)l'

n=0

In the same way as above we deduce

Kit,x; X, Y,)<C Y 2"K(12 " x; X, Y, ),

m
n=0

for all small values of ¢. This implies that xe(X, Y,),,if 0>8,,

Conversely, if xe(X, Y,),, and still 0>6,,, we can write x=3 v,
where v, €Y and I (v,)=0 for k=1,.,m. Since I, is bounded on
(X, Y)y, and 3 v, converges to x there, we conclude that I",(x)= 0. This
proves (6). The proof of theorem 2 is now complete.

We shall now consider the excluded case e {6,, .., 8} in Theorem 2.
We first need a definition.

DEeFINITION 3. We shall say that the couple (X, Y) is linearizable by
means of the family A(z), 0 <t <1, if A(#) is strongly continuous in f on X
and

K, x; X, V)~ llx — A() x|y + £ | A(2) x] .

It is easy to see that (X, Y) is linearizable by means of A(¢), if and only if
max( || x — A(t) x| x, t | A7) x|l y) < Cmin|lx]] y, ¢ [[x]] ).
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THEOREM 3.  Suppose that I'\, .., "y, is a strongly independent basis for
the set G and that I',, has order 6,,, (m=1, .., M). Assume moreover that
the couple (X, Y) is linearizable by means of the family A(t). Then the space
(X, Y, consists of all xe(X,Y), o Such that

r,(x)=0, forallmwith 0,,<8, (7)

! dan\'»
(j [T, (A()x)]” T) < oG Jorallmwith 0, =0. (8)
0

Proof. According to Lemma 1 we can choose a supporting sequence
(w,). Put

m

A ()x=A(t)x — Z I (A{)yw)wy, m=1,., M.

k=1

Using the notation of the proof of Theorem 2, we shall now prove that
xe(X,Y,),iland only if xe (X, Y, _,),, and

»1 F A x P I 1ip
(| (Mony drye )
o \ I"N(1, T,)) !
This will give the result in view of Theorem 2.

First we note that 4,, maps X into Y,,. Using the assumption on A(t)
it is easy to see that if xe Y and I',(x)=0 then

(A1) X)) < CN(e, Ly mind (X x, ¢ x]fy)- (10)

This implies in particular that (X, Y,,) is linearizable by means of A,,(1).
Writing A,(1) = A(t) we have the recursive formula

A x=A4, (t)x—T (A(t)x)w,,
Then the assumptions imply

I (A(n)x
K(t, x; X, Y,,,)sc(K(z, X, Y, ,.)+|—i"i/-“—)3)—|>.

N, T,)

Thus if xe (X, Y,, )y, and (9) holds we can conclude that xe (X, Y, ), .
Conversely, if xe(X, Y, )y, we can use (10) to get the estimate

\F (A x) < CN(L, T, ) K(t, x3 X, Y.

This implies (9). The proof of Theorem 3 is complete.

COROLLARY 2. Suppose that I'\, .., Iy, is a strongly independent basis
for the set 4 and that I',, has order 0,,,, (m= 1, ..., M). Asswme moreover that

"
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the couple (X, Y) is linearizable by means of the family A(t). Then the couple
(X, Y,) is linearizable by means of the family

M
Ay x=A(1)x = Y T (A1) X)wy.

k=1

Here w,, ..., w,, is a supporting sequence for I'|, .., Iy,.

4. PERTURBATION OF FUNCTIONALS

In the theorems of the previous section it is important to have a strongly
independent base for the set % of linear functionals defining the constraints.
We shall here give some results that are useful to prove strong inde-
pendence. One idea is to consider the functionals in % as perturbations of
simpler functionals which are known to be strongly independent. We start
however with a simple sufficient condition for strong independence.

LEmMMmA 2. Let Iy, .., Iy, be bounded linear functionals on Y. Assume
that there exist u,, .., U, depending on t, and positive constants A and B,
such that

Iu)=1, J(t, u, )< A/N(t, Ty, k=1,., M, (1)
!det[Fr(uk)]l >B1 (2)

for 0 <t <. Then I\, .., I', are strongly independent.
The same conclusion holds if (2) is replaced by the condition

. N Iy) ‘
;ILmO I(ug) - NoT) a, 5 where det[a, ,]#0. (3)

Proof. For each m we put w,,=>Y  c, 4, where ¢, . are the
solutions of the system

M
S i T ) =8y T=1,. M.

k=1

Then I'(w,,) =4, ,. We need to estimate J(z, w, ). Let 7 run through all
permutations of 1, ..., M and put D= |det[ I',(#,)]]. Then

lemel D7 X T IN(u ) <D™ Y, [] Mo T It uy,)

n, ¥k vEmM n,#EKk vEmM

<A™ B~ Y T NG, TN, T ).

re#Ek v#EmM
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Thus we get the estimate
[Cpil S(M =1 AY " 'B~'N(1, [,)/N(t, T,,).

Therefore we conclude that
M
J,w, )< Y, el Jt,u ) <MV AMB™N(1, T,,)
k=1

This proves the first part of the lemma. The second part is obvious, since

det[ I',(u,)] =det| I',(u,) %((i—’?—))] —det[a, ,1=0, as (—0.

The proof is complete.

DermNviTION 4. Let I” and 4 be two bounded linear functionals on Y.
Then we say that I dominates 4 if

N(I,A)_}
N(t, IN)

as t—0.

LEMMA 3. Let Ty, .., Iy, be strongly independent functionals and sup-

-~

pose that T, =T, +A4,, where T, dominates 4,,, (m=1,.., M). Then
I, .., T, are strongly independent and

N, I )~NuT,), m=1.,M
Proof. By assumption we can find a supporting sequence w,, ..., w,, for
I, ., Put u,=a,w,, where a, =1/(1+4(w.)). Then I'(u)=1.
Note also that

| 4wl SN(t, 4) Tt wi) S AN, 4)/N(E, T).

Since I, dominates 4, we conclude that 4,(w,)— 0 as t— 0. Thus «; — 1
and therefore |x,| <2 for small values of 7. Consequently

J(t, up ) = |y | J(r, wo) <24/N(t, T)).

It follows that N(z, I',) <2AN(t, I',). Conversely we have for small values
of ¢ that

N(t, [) < N(t, T + N(t, 4,) <2N(t, T,
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Therefore N(t, I',) ~ N(t, I',) and thus J(z, u,) < C/N(t, I',.). Moreover

M
det[ I, (u;)) =[] o -det [5,VA,+AV(WA,).

k=1

N(t, Fk)}
Nt T)

Since

.N([’]:k)SAN(I’{r)
N, T)) N, T,)

{4 w ) -0

we have that

lim det[ I (u,)]=1.

-0

This implies that I, .., I",, are strongly independent. The proof is
complete.

ExampLE. We conclude with an example to illustrate the importance of
the concept of strongly independent basis. Let us start with two functionals
A and B. Assume that N(f, A)~t"* and N(t, B)~t *, where a>p.
Moreover assume that A, B are strongly independent. Then let % be the set
{4+ B, 4}. By lemma 3 (used with just one functional) we have that
N(t, A+ B) ~ ¢t > However, 4 + B and A4 are not strongly independent. In
fact, assume that they were. Then we could find ¥ and v so that
(A+ Bl{u)y=A(v)=1, A(uy=(A4 + BXv)=0, J(t,u) < Cr* and J(1, v) < Cr*~.
This gives the contradiction

1=B(u)< C N(t, B)I*< Cot* %,

However, A4, B is a strongly independent basis for %. Note also that
theorem 2, incorrectly used with the functionals 4 + B, B, would not give
the correct breakpoints «, f.

PROPOSITION.  Suppose that Iy, ..,y and Ty, .., [\, are two strongly
independent bases for 4. Let 0,, and 8, be the orders of I',, and T",,, respec-
tively, (m=1, .., M). Then the two sets of breakpoints {6, .., 0,,} and
{F}, s ees EM} are equal,

Proof. It is no restriction to assume that 6, <6,< --- <8,, and that
8, <6,< --- <8,,. Now we can write

M—1
Fy=2Ayly+ Y At

k=1
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It follows that N(z, I_~“M) < Ct " Changing the roles of I",, and I'",, we also
get N(1, I'y,)< Ct % Thus 0,,=0,, Excluding the functionals I',, and
Iy, from the set % and proceeding in the same way on the remaining
sequences we get the conclusion.

S. INTERPOLATION OF SOBOLEV SPACES WITH CONSTRAINTS

We shall here consider Sobolev spaces of functions in one variable. To
be specific we work with functions defined on the one-dimensional torus T.
Thus let X denote the Lebesgue space L,(T) and let Y denote the Sobolev
space of all we X such that the N:th derivative D"u e X. As norm on Y we
use

lull y = Nl y + 1DVt .

are the well known Besov spaces B’

The interpolation spaces (X, ¥), , "

where s = N0. We shall consider functionals of the general form

I'(uw)y=(D"u)(s,) + Z J. (D*u) dv, (1)

k<n"T

where s, is a given point and v, are bounded measures on T. The
functional defined by the sum on the right hand side will be treated as
perturbation of the first term.

LemMMma 4. Put f(u) ={D"u}(sq) where n+ l/p < N. Then N(t, Ty~tt,
where 8, = (n+ 1/p)/N. Moreover, if I is defined by (1), then I" dominates
A=T—~Tand N(t, Ty ~1 ™.

Proof. Using Sobolev’s embedding theorem if p < oo and Kolmogorov’s
inequality if p = oc, we get that

[D"u(s)| < C ull sy ™ Null G < Ct=%J(1, u). (2)

Thus N(t, Iy < Ct =™

The converse inequality calls for a construction. Let ¢ be a given
infinitely differentiable function on the real line such that Y(&)=1, |&] <1/2
and Y(£)=0, {£| = 1. Then we put

D,(5)= Z W((tv)™) exp( —ivs), where ="V (3)

V= —o
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We can choose ¢ so that @, is non-negative. The proof of the following
estimate is left to the reader:

—n—1

7

" S —.—_-—-——*, s = b b LR
D7 (s)] C"‘”1+(lsm(s)]/t)2" k=012 4
Since @, is non-negative we have
ds
f D(s)du(s)=1,  where du(s)=—. (5)
T 2n

Now we put
u=(P, * (p)/cz,

where

p(o)=(D"®)Nso—0), =] |lp(o)* du(a)
T

We claim that
J(t, u) < Cto, (6)

Since I(u,)=1 this implies that N(z, I)~t~%. To prove (6) we first use
Bessel’s equality to estimate c2:

A=Y ) Y M)

Here the sum can be considered as a Riemann sum for g |(i)" y(&EV)|* d&.
Thus we conclude that

CZNI.‘Zn‘l

Now (3) and (4) imply that

@, % plly<|@lly<Cr 1717

[P, *@lly< Ct V| @y Cr N 1+17,
Thus we get
Jt, 1) < Comn= 1+ el = G

proving (6).
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Now we have proved the first part of the lemma. To prove the second
half it is enough to consider the case A4(x)= h (D*x) dv, where k <n and
v is a bounded measure. Now (2) implies that

|4(x)| < Cr~%J(1, x).

Thus N(t, 4) < Ct~%. Since 6, <8, we conclude that I" dominates 4. The
proof of the lemma is complete.

We shall now consider sets of functionals of the form (1). Using the
previous lemma we can however concentrate on functionals defined by
pure point evaluations of derivatives. To begin with we consider point
evaluations at one point s.

LeMMA 5. Consider functionals of the form

L(u)=(D™u)(sy), k=1,.,K

where n,#n, if k#r. Then I'y, ..., I'y are strongly independent.

Proof. We base the proof on the construction of the previous lemma.
Thus we put wu,=(P, *@;)/cc where ¢ (a)=(D"®,)(s,—a) and
ci~t ' Then we have @' (u;)=1 and J(t,u,)< C/N(1, I}). Using
lemma 2 we have only to prove that

lim I(u) 1% % =a,,,  where det[a,,]#0.

1—0

This is easily done using Parsevals formula and approximation by
Riemann sums in the following way:

| "¢ o) 7™, 0) du(o)
§ It (0)|* du(a)

=Z<trv>“'+"~ WM e

rr(uk) r(),‘ﬂk

> [Govy™ g((ov) )| b,
where
eou=[ G WEN A, b= | 16 WE)I de.
R R
It is obviously enough to prove that det[c, ] #0. To see that let z,, .., 2«

be arbitrary complex numbers such that ¥ |z,]?= 1. Then we consider the
quadratic form

2

0= zc,k:?=j T8z | (SN2 de.

k
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If not two of the integers n,, ..., ny are equal then Y (i€)™ z, # 0 for almost
all £ and all z,, .., zx. Thus the quadratic form Q is positive and therefore
det[c, .1 #0. This completes the proof.

We shall now consider point evaluations at different points.

Lemma 6. Consider functionals I';, of the form
I uy=(D"*u)s,),  j=1,..,J, k=1, ., K,

where s;#s; if i#j and n;, #n,, if k#r. Then the set {I';,} is strongly
independent.

Proof. For each fixed j we have a set I, of strongly independent func-
tionals. By lemma 1 we can find a supporting sequence w,,, k=1, .., K.
Let x; be an infinitely differentiable function such that y,=1 in a small
neighbourhood of s, and x;=0 in the neighbourhood of all s;, i # j. Put
W, x = x;W,«- Then it is easy to see that W, , is a supporting sequence for the
full set {I",,,j=1,...J, k=1,.., K} This proves the lemma.

THEOREM 4. Let 9 be the set of all functionals defined for j=1, .., J and
k=1, ., K, by the equation

I u)= (D" u)(s,)+ Y, J (D (u))y dv,,,. (7)
remp” ¥

Here v, , are bounded measures on T. Moreover s, ..., s; are distinct points,

ne#Fn, if r#k and n;, +1/p<N. Put 0;,=(n;+1/p)/N. Then the
interpolation space (X, Y4), , consists of all xe(X, Y), , such that

o.p
I (x)=0,  forallj, k for which 0,, <6 (8)
1 /] ¢t ple de\1P
(L <;J>7[\Fj’k(s,x)|”ds> 7’) <o if 0,,=0. (9)

Here
Tials, x) = I (x(o+5)).

Proof. From the previous lemmata we deduce that the functionals 17,
form a strongly independent basis for ¥. Now define @, by formula (3).
Using the estimates in the proof of lemma 4 it is easy to see that (X, Y) is
linearizable by means of the family A(z) defined by A(f)x =&, * x. (We
leave the details to the reader.) Using theorem 3 we see that it is sufficient
to show that if x€ (X, Y),,,  then (9) is equivalent to

1 d iip
([ lr,,kmmx)v{) <. (10)
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Note that
(A x) = (D, * T, (e, x}N0)

and that I, (e x)e(X,Y),,, where n=0,,—y,,/N=1/(Np). Let W
denote the Sobolev space of all x € X such that Dxe X.

Then (X, 7Y), ,=(X, W),, ,. Therefore it is sufficient to show that if
ye(X, W), , the following two conditions are equivalent:

1/
([ 1@ o §) < e, (an
]

L/ e pip dr Lip
(G wera)" ) < (12)

-

First assume that ye (X, W),, , and that (11) holds. Let W, denote the
sub-space of W of all u with #(0)=0. Then Theorem 3 implies that
ye(X, Wy),, ,. Then we can write y = y,+ y, where y,&€ X and y, e W, so
that y,(0)=0. Let us put 7,(s)=0 for s <0 and 7,(s)= y,(s) for s 20 and
similarly for 7, and 7. Then it follows that §, e W. Thus je(X, W), ,

implying that
/1 AN
(j (;f Iﬁ(s+t)—}7(s)[”ds> —) <o
o \7y 4

Restricting the domain of integration to the interval —¢ < s <0 we get that

1 /] ¢t pip dr lip
— , » - .
<L <IJO|}(S)| ds) t) < 0.

This proves half of (12). The other half follows by a symmetric construc-
tion. To prove that (12} implies (11) we write

(@, % 1)(0)= Y, f @ —s) y(s) duls)

k=0"/
where

Io={s:2" 1< s| < 2%1} it 1<k, 2%t<n,

Iy={s:|s| <71}
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and 7, is empty for the remaining values of k. Then we use (4) and Holder’s
inequality to get

[ ®(—5) y5) duts)

T

1/p

. 1/p
<([ oo aus )" (] 1ol duo)

, du(s) ! ” s
<Cr 1< lk————““”sw))z")p) (flkly(s)l d/t(s))

<C2(1~2n)k LJ‘ IJ(S)II’d (s) 1/p
< 2, P %

I/N

where 7=1¢"" and »n is a fixed large number. Thus

1 Ip
(1—2mk , yd .
(@ NOI<C 2. 2 (rzkjls.s,zk““‘” ""“’)

erSn

Now we note that

1 1 pip g\ Ve
HEIREE)
AN 2P de\ Ve
S C<J0 <7J‘7, Iy(s)lﬂd/‘“)) ~t£>

Thus we conclude that (12) implies (11). This completes the proof.

Application to Best Approximation
Using Corollary 2 and the constructions of the preceeding proofs we get

the following result, which is Jacksons inequality for approximation by
trigonometric polynomials with constraints.

CorOLLARY 3. Under the assumptions of Theorem 5 the following holds.
Let 4 be a given positive integer. Assume that x€Y and I';;(x)=0 for all
jand k. Then there is a trigonometric polynomial Y of degree less than A such
that

Ix = plly < CA=Y |x]ty
and I';;(y)=0 for all j and k.

Proof. Let A(r) be defined as in the proof of the preceeding theorem.
Let {w,,} be a supporting sequence for the set ¥ = {I",,}. Using corollary
2 we see that the couple (X, Y,) is linearizable by means of the operators

Ag(t)x = A(t)x — Z I (A1) x) w
ik
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By the proofs of lemma 4 and lemma 5 we see that w,, are linear combina-
tions of functions of the form @, xv. Thus A(t)x is a trigonometric
polynomial of degree less than 7', where 7 =", Moreover we have that

Ix = A, x| y < Cr x|l y
Writing 7= 4" we get the result.

Using Corollary 3 we can now deduce a theorem on best approximation
with linear constraints. Let E(4, x) be the best approximation of x by
means of trigonometric polynomials of degree less than A, that is

E(A, x)=inf{||x — y|| ,: deg(») < i}

Similarly let E (4, x) be the best approximation of x by means of tri-
gonometric polynomials y satisfying the linear constraints I'( y) =0 for all
I in the given set 4, ie.

E (A x)=inf{[[x — ylly: deg(y) < i, I(y)=0forall 'e ¥}

COROLLARY 4. Let 4 a the set of functionals satisfying the assumptions
of theorem 5. Then for 0 <x < N we have that

X lip
(Z (27m)” Eg(2",X)"> < o0,
n=0

if and only if xe (X, Y, , and

I () =0, Sforall j, k for which n;, <a—1/p

J

1 /] pt olp geN\ Mp
<j <—j |Fj‘k(s,x)|”dv> —> <o if m=a—1ljp.
0 Z t T

Here I'; (s, x) =T, ) (x(e +5)).

Proof. The result follows in a routine way from the previous corollary.
We leave the details to the reader. See [6], section 3.

6. INTERPOLATION OF WEIGHTED L,-SPACES
We shall here consider interpolation of weighted L ,-spaces. Let X denote

the Lebesgue space L,(u) on a set 2 and 1 < p < oo. As space Y we take
a weighted L, -space with weight w such that @ > 1. The norm on Y is

= o = [ ul)? )

6408214
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We shall consider functionals of the form

I, (u) =J Qu du
Q2

Clearly I, is bounded on Y is and only if

. q iy
<J <M> dy) <o where l= 1 —l.
o\ w q P

Lip
J(t, u) ~ (J (w, |ul)” d;z>
2

where w,=max(1, tw). Therefore

q l/g
(1, (2]
2 '

We shall now give a general theorem, where strong independence is part
of the assumptions. Then we consider three special situations where we
prove strong independence. In the first case we consider what we call essen-
tially disjoint functions ¢. In the second case we discuss a general situation,
but with the restriction p =2. In the third case we consider general p but
restrict ourselves to the real line and special choices of weight functions and
functionals.

Note also that

THEOREM 5. Assume that ¢, ..., @, are given functions such that
i |§0m| i ' 7
N, (t)= — | du ~t " m=1,.,M, (1)
=l tw
where 0 <8, < 1. Define the corresponding functionals I',, by the formula

F?ﬂ(u) = J\ (pmu (1ﬂ'

Assuming that these functionals are strongly independent we have the
Jfollowing result.
The interpolation space (X, Yy), , consists of all xe (X, Y)

(I

0., Stich that

r(x)y=0  forallmwith 0, <0, (2)

n

1 rf 2 dt 1/p
—j Iz, x)de ‘_> <w  if 0,=0. (3)
tJo t
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Here

r,(t, x)=J @, X du, O<t<l

o<1
Proof. First we note that condition (1) is equivalent to
N, I,)~t "™ (4)
This follows from the observation

q liq

Lo d,u>

tw

Here the general term in the sum can be estimated by a constant times
N, (27" < C2" Thus (4) follows.

It is easy to see that the couple (X, Y) is linearizable by means of the
family A(r) defined by

N, F,,,)s( y J I(ﬂ,,,l"dﬂ+f

r<12 < 12 "n<? ter =1

{O, tw =1
A(t)x =
X, to <1

Since I' (A(t)x)=1T (1, x) the result now follows from theorem 3.

" ”m

The Case with Essentially Disjoint Functions

DEeFINITION 5. The functions , ..., i,, are said to be essentially dis-
joint if there are sets Q,, ..., @2,, such that i, vanishes on 2, r #k and if

q liq - q ligq
< f du> <C < | d,u)
ten = {tenz 1} A

for some positive constant C and for all small values of ¢

Vi

1w

¥

tw

LEMMA 7. Assume that p> 1 and that i, .., Yy are essentially disjoint
and put

(pl‘ll = l//"l + X’”

for m=1, .., M. Assume that

o
( Jlm =1

Vo

fw

q /g
dl‘) ~t [/
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and
Am

tw

q s
0 ( f d,u> -0
1wz 1

Then the corresponding functionals I, are strongly independent. Moreover
', has order 0,,.

Proof. We shall consider ¢,, as perturbations of y,,. This is possible
since the assumptions on y,, means that the functional defined by y,, is
dominated by the functional defined by . It is therefore enough to
concentrate on the functions ,,.

Put Q,(7) = {s: tw(s) =1} n Q,, and define u,, by the formula

T {'ﬁm 1( Illbm|/tw)q/j!2m(l) ( 'wm,/fw)q d/‘l on Qm(t)
"0 outside 2, ()

Then T, (u,)=1. Moreover I';(u,)=0 if k#m because y, vanishes on
Q,,. Moreover

It/fn.|>”“”“ >””/( (ll//ml>" >
Jtou,)<C — d Y/
(1. ) (Lzmm< tw “ s/ Jsz,,,m tw “
l!//ml)" >”"
C — 1 d
<LG.(:;< lw a

Using the assumptions we conclude that I, are strongly independent.

N

The Case p=2
LEMMA 8. Let p=2 and assume that ¢,, .., @, are given functions.
Define N, (t) by formula (1). Assume that for small values of 1
Moz 2 M
I duzeg>0 o 2=1 5
f Lo N o] H7 /2 ®

Then the corresponding functionals I',,, m=1, .., M are strongly independent.

Proof. For each m we now put

" _{W/(thm(t))z, tw>1
oo, tw <1

Then I',,(u,,)=1 and

P
tw

2 1/2
du) / /Nmu)Zs CIN (1)

a1, um)<C<f

w21
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It i1s now sufficient to prove that the determinant

N (1) rr(“k):l

det[[‘,(u,\.)]zdet{ N 1)

is bounded away from zero. To do that we consider the quadratic form

e Nl Tu)
Q'_r%“r N,(f) “k

Now @ is equal to the sum on the left of formula (5). Thus Q is bounded
away from zero. It follows that Iy, ..., I'y, are strongly independent.

The Real Line, General p

We shall now consider the Lebesgue measure on the real line R with
weightfunction w(s)=1s|“ if |s| is large and w(s)>=1. We shall consider
functionals defined by functions ¢ which are perturbations of y(s) = w(s)".
We present our results in the following two lemmas.

LEMMA 9. Assure that , =w™ for m=1,.., M. Put 8, =24, + 1/aq
where 1/g=1—1/p. Assume that the numbers A,, are all different and that
0<8,<1. Let I, be defined by \s,, so that

m

rm(u) = J:R l//,,,(.ﬁ') ll(S) ds

Then I, .., [y, are strongly independent and T',, have order 0,,.

Proof. In order to prove the last formula it is enough to prove that

. 1
J Yo\’ ds ! ~p O
ren =1 lu)

This is however equivalent to

1 \ va
7<J |S|u(f.,,,—liq dS) »\,t*”'"’
T\ rgaz1

which is obvious. Now we introduce the functions

w ATV o)1), tw=1,
lll'l—
0 tw < 1.

Here we choose so that

1 c
C-l___ﬁj w‘““"”)ds~l.

ozl
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Then I, (u,,)=1 and

1ip
J(t, ll»,)éC(J. @ ATl ds> < Ct,
fo 2z 1
It remains to consider the determinant det{ /"(x,)]. Clearly

- ¢ ) ds  2c |
T _ Ry Ve et Sl /
r( Uy ) - '( w * ta = t 1 A
tarz= 1 w a ik

where
Ar,k :(}r - ()l«

Note that 4, , <1 since £, <a—1/q and 4, > —1/q. Using the element on
place (M, M) as pivot element we see that

D, =det

—det[ 1 }
T—d, . (1=d, 1 —dy,)

V2 B
W
(1 - Ar.k )( I - Ar,/\l)(l - A;W.k) rhk=1,..M-—1

M-—1 A M-t A _ 1
- rM H M.k det ‘: ._..,:\
rk=1...AM—1

re=1 l—ArvAI k=1 I_Az’ll.k I-Ar.k
M- L AZ
(=DM ] <A,
AI;[1 I—AT‘“‘_ v

Since D, =1 we conclude that

2,
=%,

Dy=(-D" ]

1sh<rsM

Thus D, #0 and hence det[ 7 (u,)]#0 if all the numbers A, ..., i,, are
different. This completes the proof.

LEMMA 10.  Let @4, ..., @5 be locally integrable functions such that

lim 5] g (s)

|s} — =«

exist and are non-vanishing for all m=1,. ..M. Put 8, =4,+ 1/aq and
assume that all 2, are different and that 0 <60, < 1. Then the functionals T,
defined by ¢,, are strongly independent.
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Proof. Let I, be defined by the previous lemma and put

L= lim |s| “* ¢, (s)

s+ o

Moreover we write 4 = LI",,— I',,. Then the result follows if we can prove
that I, dominates 4. Thus let ¢ be a given positive number. Then we can

"m

find R so that |L—¢,,/\¥,,| <e for all s with |s| = R. Then it follows that

W q lig
Nit, )< C e j o) s + \Ls,, — | ds
sz R \ (W, |s] < R

Thus we conclude that

lim sup t*"N(t, 4) < Ce
t-+0

for all £>0. Thus I, dominates 4. The result now follows.
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